54อุณหภูมิเปลี่ยนรูป, การเติบโตของผลึก
7.1.3 อุณหภูมิของการเปลี่ยนรูป
เหล็กเฟอร์ไรต์ถูกเปลี่ยนไปเป็น เหล็กออสเตนไนต์ เราลองมาทำความเข้าใจ ถึงหลักการเกี่ยวกับอุณหภูมิของการเปลี่ยนรูป (Transformation temperatures) โดยมีที่สำคัญอยู่ 2 ส่วนก็คือ
รูปแสดงสภาวะการเปลี่ยนรูปของเหล็กกล้าคาร์บอน
(ส่วนรายละเอียดจะได้กล่าวถึงในภายหลัง)
แนะนำเพื่อให้อ่านได้ต่อเนื่องให้ คลิกขวาเลือก Open link in new window
-
อุณหภูมิของการเปลี่ยนรูปด้านต่ำ (Lower transformation temperature) คืออุณหภูมิที่โครงสร้างบีซีซีเริ่มต้นเปลี่ยนแปลงโครงสร้าง โดยเปลี่ยนไปเป็นโครงสร้างเอฟซีซี นั่นก็คืออุณหภูมิที่เริ่มต้นเปลี่ยนจากเหล็กเฟอร์ไรต์ ไปเป็น เหล็กออสเตนไนต์ 100% อุณหภูมิการเปลี่ยนรูปสำหรับเหล็ก และเหล็กกล้าทั้งหมด อยู่ที่ประมาณ 720°C (1,330°F)
2. อุณหภูมิของการเปลี่ยนรูปด้านสูง (Upper transformation temperature) คืออุณหภูมิที่ทำให้เหล็กที่มีโครงสร้างบีซีซีอย่างสมบูรณ์ เป็นเหล็กที่มีโครงสร้างแบบเอฟซีซี ณ อุณหภูมิตรงจุดนี้ จะไม่มีเหล็กเฟอร์ไรต์เหลืออยู่ แต่เหล็กที่เกิดขึ้นจะเป็นออสเตนไนต์สมบูรณ์แบบ 100% อุณหภูมิการเปลี่ยนรูปจะเปลี่ยนไปตามแต่ละชนิดของโลหะ ช่วงกว้างของอุณหภูมิของค่าด้านต่ำจะอยู่ที่ 720°C (1,330°F) ส่วนค่าด้านสูงอยู่ที่ 1,100°C (2,000°F)
ถ้าเหล็กถูกชุบแข็งอย่างรวดเร็ว จะเกิดการเปลี่ยนโครงสร้างจากออสเตนไนต์ไปเป็นมาเทนไซต์ (บีซีที) โดยจะไม่กลับคืนมาเป็นเหล็กเฟอร์ไรต์
รูปโครงสร้างเหล็กออสเตนไนต์ถูกเปลี่ยนเป็นโครงสร้างเหล็กมาเทนไซต์
7.2 การเติบโตของผลึก (Crystal Growth)
เมื่อเหล็กถูกให้เกิดความร้อนจนไปถึงอุณหภูมิของการเปลี่ยนรูปด้านสูง มันก็จะเกิดการหลอมเหลว จนกลายเป็นเหล็กหลอม แล้วเมื่อปล่อยให้มันเย็นตัวลงอย่างช้า ๆ การเย็นตัวของโลหะเหลวจะเริ่มเป็นของแข็งจับตัวกัน และท้ายสุดก็กลายเป็นเหล็กเฟอร์ไรต์
การเปลี่ยนแปลงจากเหล็กที่เป็นของเหลว จนเปลี่ยนสถานะเป็นของแข็ง (หรือ การเติบโตของผลึก) แสดงให้เห็นในรูป
รูปแสดงกระบวนการเติบโตของผลึก
รูปการเติบโตของผลึกของเหล็ก
ทีนี้เรามาดูกระบวนการเติบโตของผลึก เหล็กเริ่มต้นจากสถานะของเหลวร้อน ต่อมาเมื่อมีการลดอุณหภูมิลงต่ำลงอย่างช้า ๆ ณ จุดจุดหนึ่งน้ำเหล็ก เมื่อเย็นพอ มันเริ่มจะจับตัวกันเป็นของแข็ง หน่วยเซลล์ก็จะเริ่มเป็นรูปเป็นร่างที่จุดนี้ (เหล็กออสเตนไนต์) ตามอุณหภูมิการเปลี่ยนรูป ยิ่งอุณหภูมิลดลงต่อเนื่องหน่วยเซลล์ก็จะเกิดมากขึ้น และหน่วยเซลล์ด้านข้างก็แผ่เป็นกิ่งก้านสาขา และมาเกาะเกี่ยว
การโตขึ้นเรื่อย ๆ และมีการแผ่เป็นแขนงกิ่งก้านสาขาเพื่อเกาะจับตัวรวมกันของสถานะของแข็ง จนเป็นโครงร่างที่กำลังเติบโต หรืองอกขึ้นใหม่ แต่ยังไม่สมบูรณ์ เราเรียกส่วนที่กำลังแผ่กิ่งก้านนี้ว่า กิ่งก้านยื่นแผ่ หรือเดนไดรท์ (Dendrites)
รูปตัวอย่างเดนไดรท์ที่กำลังยื่นออกมาจับตัวกัน
รูปเดนไดรท์ของโลหะผสมชนิดหนึ่ง
วิดีโอแสดงการเกิดเดนไดรท์ของเหล็ก
เมื่อหน่วยเซลล์เริ่มมีมากขึ้นแล้ว จากเริ่มเป็นของแข็ง จนเกิดเดนไดรท์เริ่มจับตัวกันเป็นกลุ่มก้อน ทำให้เกิดมีการแผ่กิ่งก้านแตกแขนงออกไปชนกับแขนงตัวข้างเคียง การโตขึ้นของเดนไดรท์มีอย่างต่อเนื่อง ทำให้เกิดสภาพการณ์ที่เป็นของแข็งใกล้จะเสร็จสมบูรณ์ การแผ่ขยายของเดรนไดรท์ก็จะขยายจนเต็มพื้นที่ จะหยุดก็ต่อเมื่อโลหะมีสภาพกลายเป็นของแข็งทั้งหมด
รูปเหล็กหลอมเหลวที่อุณหภูมิลดลง และกำลังจับตัวกันเป็นกลุ่มของแข็ง
วิดีโอแสดงการเกิดเดนไดรท์ของทองแดง
วิดีโอแสดงตัวอย่างการเกิดเดนไดรท์ของอลูมิเนียม
ทำให้เกิดมีอาณาบริเวณเป็นขอบเขตเล็ก ๆ ยิ่งอุณหภูมิลดลงอีกเรื่อย ๆ ขอบเขตของแข็งก็จะกลายเป็นแผ่นใหญ่ขึ้น ของแข็งแผ่นข้างเคียงก็เริ่มมาติดกัน จนกลายเป็นอาณาบริเวณขอบเขตกว้างขึ้นเรื่อย ๆ
การเข้าจับตัวกันเป็นก้อน จะได้เหล็กที่มีสถานะกลายเป็นของแข็งเย็นตัว (เหล็กเฟอร์ไรต์) แล้วลองนำไปส่องดูด้วยกล้องจุลทรรศน์ จะพบว่าเนื้อเหล็กจะมีขอบเขตเหมือนรอยแตก ซึ่งขอบเขตจะมีกระจัดกระจายไปทั่วผืนโลหะ เล็กบ้างใหญ่บ้าง (วัสดุบางชนิดอาจเห็นได้ด้วยตาเปล่า)
ขอบเขตที่เกิดเดนไดรท์แต่ละขอบเขตมีขนาดไม่เท่ากันเนื่องมาจากการเติบโตของเดรนไดรท์เป็นอิสระไม่ขึ้นต่อกัน ซึ่งจากการที่ไม่เท่ากันนี้เอง ทำให้เกิด เกรน (Grain) ซึ่งแต่ละเกรนจะมีการจัดเรียงตัวที่ต่างกันเมื่อเกรนบริเวณข้างเคียง มาชนกันก็จะถูกแบ่งออกเป็นขอบเขต การแบ่งเส้นขอบเขตของแต่ละส่วน ซึ่งเราเรียกว่า ขอบเขต หรือขอบเกรน (Grain Boundary)
รูปเกรน และขอบเกรนของเหล็กเฟอไรต์
วิดีโอแสดงการเติบโตของเกรน และขอบเขตเกรน
วิดีโอจริงแสดงการเติบโตของเกรน
ข้อคิดดี ๆ ที่นำมาฝาก
“เลื่อนตัวเองขึ้น แต่อย่าลดคนอื่นลง”